Throughput enhancement by exploiting spatial reuse opportunities with smart antenna systems in wireless ad hoc networks

Chao-Tsun Chang a,⇑, Chih-Yung Chang b, Tzu-Lin Wang b, Yun-Jung Lu b

a Department of Information Management, Hsiuping University of Science & Technology, Taichung, Dali, Taiwan
b Department of Computer Science and Information Engineering, Tamkang University, Taipei, Tamsui, Taiwan

Abstract

Smart antenna (or multi-beam antenna) systems can support simultaneous transmissions (or receptions) of multiple packets in different beams using the same channel. However, network performance is highly dependent on transmission scheduling. This study develops two transmission-scheduling schemes for use with smart antenna systems to improve network throughput and reduce transmission delay. The proposed scheduling mechanisms, which are designed to minimize the average latency and maximize network throughput, exploit the opportunities for parallel transmissions and consider communication restrictions and packet sizes. The performance results indicate that the proposed schemes outperform previous schemes in network throughput and transmission delay.

1. Introduction

Wireless ad hoc networks are characterized by low cost and high transmission rates without requiring the use of any infrastructural support. The greatest challenge for improving the network throughput of ad hoc networks involves exploiting spatial reuse opportunities at which multiple packets can be exchanged simultaneously in an area without colliding with each other. Recent advances in antenna technology have increased spatial reuse opportunities.

Omnidirectional antennas transmit or receive signals equally well in all directions. Transmissions using omnidirectional antennas might easily create spatial bottlenecks that severely limit the overall network throughput. Unidirectional antennas [1–3,11,15] focus radio-frequency (RF) energy in a particular direction and exploit stronger beamforming, thereby saving energy and resulting in a smaller interference area compared to that of omnidirectional antenna systems. Although unidirectional antennas were originally applied for exploiting spatial reuse, they permit only one transmission or reception by a node at a given time. Recently, multiple-beam smart antennas [6–8,10,12–14] used in ad hoc networks have received attention because of their potential to improve network throughput. Through the application of complex digital signal processing techniques, multiple-beam smart antennas can support the simultaneous transmissions (or receptions) of multiple packets in different beams by using the same channel. This is the case with switched-beam smart antenna comprised of multiple beam antenna array (SB-MBA) [7,13]. Numerous MAC scheduling approaches [6,7,14–16] have been proposed for increasing the opportunities for simultaneous transmissions (or receptions) and improving network throughput through smart antennas. However, enhanced scheduling to increase the parallel degree of transmissions with smart antenna systems is required.
Several studies [6,7] have proposed scheduling protocols with smart antennas to improve the spatial reuse opportunities for unidirectional antennas. Although smart antenna systems can support multiple-beam formations in multiple directions, they cannot be used for data transmissions and receptions simultaneously. This constraint is referred to as the Tx/Rx constraint in this study. A host with smart antennas has the data diversity constraint, which restricts its communication with only one neighboring host in each beam; that is, a host equipped with k-beam smart antennas may communicate with a maximum of k different hosts during any given period. How to protect the packet transmission from interference for a given set of communication requests and minimize the transmission latency by considering the Tx/Rx and data diversity constraints are the key challenges for maximizing network throughput.

This study develops transmission scheduling schemes with multiple-beam smart antennas to improve network throughput and reduce delay time. The proposed mechanisms use clustering, and they centralize the intra-cluster scheduling but schedule the inter-clustering by using a distributed approach. In intra-cluster scheduling, each cluster header collects all transmission demands from its members, schedules parallel transmission pairs, and broadcasts the scheduling results to the cluster members. The proposed intra-cluster scheduling schemes exploit the opportunities for parallel transmissions and consider communication restrictions and packet sizes, to minimize the average latency and maximize the network throughput. Furthermore, the proposed schemes consider the transmission time of packets and regulate the orders of packet transmissions to minimize their packet delays.

The remainder of this study is organized as follows: Section 2 introduces related studies. Section 3 specifies the network environment and problem formulation. The proposed transmission scheduling algorithms for intra-cluster scheduling are presented in Sections 4 and 5 shows the proposed algorithms for scheduling inter-cluster transmissions. Section 6 provides a performance evaluation of the proposed schemes in contrast to those of existing studies, and finally, Section 7 offers a conclusion.

2. Related studies

Exploring spatial reuse opportunities to increase network capacity has become one of the most critical challenges for wireless ad hoc networks in recent years. Generally, advanced antenna technologies can be classified into unidirectional and multiple-beam smart antennas. Although multiple-beam smart antennas are more expensive than unidirectional antennas, they can sense neighboring hosts in each beam and support simultaneous transmissions (or receptions) of multiple packets in different beams. However, the hidden terminal and deafness [1-5,12,13] problems can significantly degrade network throughput. The following paragraphs present a survey of related studies, which involve unidirectional or multiple-beam smart antennas in MAC protocol designs.

Several MAC protocols that were developed for unidirectional antennas adopted directional control packets to prevent control packet collisions for improving network throughput. The D-MAC [1] scheme uses control packets, such as ORTS/DRTS and OCTS, and the DVCS scheme [2] uses ORTS or DRTS packets based on the receiver’s location. Related studies [3,4] have introduced the circular-based DMAC (CRD-MAC) protocol to reduce the effects of the hidden-terminal and deafness problems and exploit space usage by using ORTS and DCTS packets. However, when the receiver loses the ORTS packet, its neighboring nodes suffer from the deafness problem. In [5], the MAC protocol for directional antennas (MDA) was designed to manage the hidden terminal and deafness problems by constructing a Deafness Table (DT) and using DRTS/DCTS messages. It also considers the optimization of the circular RTS transmissions of control frames. However, the circular RTS transmissions create a significant overhead to neighboring nodes and receivers when the intent of these nodes is not to communicate with the sender or receiver. The multiHop RTS MAC (MMAC) protocol [16] adopts the DRTS/DCTS exchange to exploit the benefits of beamforming by identifying shorter routes. However, the performance of the protocol cannot be guaranteed because the benefits are highly dependent on the topology and flow patterns in the networks. The CW-DMAC protocol proposed in [12] uses the ORTS and OCTS packets to reduce the effects of the deafness and directional hidden terminal difficulties for unidirectional antenna-based wireless multi-hop networks. However, using ORTS and OCTS packets reduces spatial reuse. Bianchi et al. [14] proposed a space division – time division MAC protocol to manage directional antennas for increasing the capacity. Although this protocol guarantees interference-free transmission of control messages, the support for spatial and time frequency divisions in the ad hoc network is complex.

Multiple-beam smart antennas have been commonly applied in ad hoc networks [12,15–18] for exploring spatial reuse opportunities to improve network capacity. The multiple-beam smart antenna is referred to as a multiple-beam adaptive array (MBAA) in [6]. These smart antennas can support simultaneous transmissions (or receptions) of multiple packets in different beams by using the same channel through the application of complex digital signal processing techniques.

Asynchronous MAC protocols based on IEEE 802.11 DCF were designed in several studies [6,7] to enable multi-packet transmissions (or receptions) for multiple-beam antennas. The hash-based scheduling mechanism referred to as ROMA [6], extends the range of scheduled hosts to two hops for improving scheduling efficiency. The ROMA mechanism implements hash functions to randomly separate nodes into senders or receivers per time slot and designates the priority of incoming links. The avoidance of hidden terminals is considered in the scheduling process. Although ROMA might arrange one-hop neighbors to increase opportunities for simultaneous transmissions or receptions, it also increases the control overheads by collecting transmission requirements from two-hop neighboring hosts. Furthermore, hash-based scheduling might arrange large and small packets for transmission simulta-
neously; thus, the beams that complete their transmissions might be idle while waiting for other busy beams.

The authors of [7] proposed the ESIF protocol, a MAC scheduling approach based on routing information. The ESIF protocol changes IEEE 802.11 RTS/CTS messages to RIF (RTS with intelligent feedback) and CIF (CTS with intelligent feedback) to piggyback feedback on neighboring nodes. The control messages used in ESIF are comprised of frame control, duration, receiver address, transmitter address, priority, N, and FCS fields. The duration field represents the estimated duration of communication, and the N field denotes the number of potential transmitters in the beam. When the sender and receiver exchange an RIF/CIF message in certain beams, they simultaneously send SCH messages to their neighbors in other beams. After receiving SCH messages, the neighbors of the sender or receiver sense which beams from the sender and receiver still possess potential for transmission, and update their directional network allocation vector (DNAV) accordingly. The SCH message permits a neighbor to determine whether it is located in the active beam of the sender or receiver. Therefore, a node can decide whether to defer the transmissions for one-hop neighbors, thereby reducing the effects of the deafness and hidden terminal problems. Furthermore, this scheme removes the backoff policy to allow simultaneous transmissions or receptions of numerous packets through smart antennas. However, the performance of parallelism highly depends on the grouping scheme which aims to construct a set of parallel transmissions as a group and arrange the transmissions in a group to be transmitted in parallel. In ESIF, each node does not determine the schedules of other neighboring nodes by considering all transmission requirements, including its own and its neighbors’ transmission requirements. Although ESIF minimizes energy and latency overheads, the potential for parallel transmissions is not exploited efficiently in transmission scheduling.

This study presents decentralized scheduling mechanisms created by modifying the ESIF MAC for exploiting the opportunities for parallel transmissions in clusters, and by considering communication restrictions and packet sizes to minimize the average latency and maximize network throughput. Table 1 shows the characteristics of the proposed scheme compared to related schemes. The proposed scheme is a novel scheduling method that improves the parallel degree of transmissions by using smart antennas without additional support.

3. Network model and problem formation

3.1. Network model

Let V denote the set of n hosts h_1, h_2, \ldots, h_n and E denote the set of neighboring connections between hosts, where $E \subseteq V \times V$. The topology of the ad hoc network can be defined by $G = (V, E)$. Let N_i represent the set of single-hop neighbors of host h_i. Each host has a unique ID and is equipped with a wide azimuth switched-beam smart antenna (SB-MBA), which comprises a k-beam antenna array [7,13] to sense neighboring hosts in each beam of smart antennas. The antenna beam patterns of the SB-MBA are predetermined by shifting the signal phase of each element to cover all directions. Each station is assumed to create non-overlapping multiple beams with gain, and the impact of a side-lobe interference [6,7] or the benefits of nulling are not considered [7]. Furthermore, each node is assumed to be able to determine precisely the angle of arrival (AoA) of a received signal [2] and the channel is symmetric. SB-MBAs support simultaneous transmissions (or receptions) of multiple packets in different beams at any given time through the use of complex digital signal processing techniques. The neighboring matrix L, which presents the neighboring relationship among stations, is described as follows.

Definition (Neighbor Matrix (L)). A neighbor matrix L with size $n \times n \times k$ is used to represent the beams where the neighboring hosts are located. Each entry of the matrix l_{ijq} stores a binary value to denote whether host h_i is located in the beam sector q of host h_j, where $1 \leq q \leq k$. If host h_i is located within q, the value of entry l_{ijq} is one; otherwise, it is zero.

Fig. 2a shows the neighbor matrix of the network shown in Fig. 1a. The entries $l_{1,2,2}$, $l_{1,3,2}$, $l_{4,3}$, and $l_{1,5,1}$ store the value one because hosts h_2, h_3, h_4, and h_5 are located in beam$ _2$, beam$ _3$, beam$ _4$, and beam$ _1$ of host h_1, respectively, as shown in Fig. 2a.

The total transmission duration is partitioned into several equal-length intervals, with each contains T slots, meaning that all hosts complete their transmission requirements in T slots. Let c_{ij} denote a communication pair where the intent of host h_i is to send data to host h_j. Several terms for presenting the problem formulation are defined as follows.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Characteristics of proposed scheme compared to related schemes.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schemes</td>
<td>Antenna type</td>
</tr>
<tr>
<td>D-MAC [1]</td>
<td>Unidirectional</td>
</tr>
<tr>
<td>DVCS [2]</td>
<td>Unidirectional</td>
</tr>
<tr>
<td>CRD-MAC [3,4]</td>
<td>Unidirectional</td>
</tr>
<tr>
<td>MDA [5]</td>
<td>Unidirectional</td>
</tr>
<tr>
<td>MMAC [16]</td>
<td>Unidirectional</td>
</tr>
<tr>
<td>CW-DMAC [12] [14]</td>
<td>Switch-beam</td>
</tr>
<tr>
<td>ESIF [7]</td>
<td>SM-MBA</td>
</tr>
<tr>
<td>Our scheme</td>
<td>SM-MBA</td>
</tr>
</tbody>
</table>
Definition (Transmission Demand Matrix \((D)\)). Let Transmission Demand Matrix \(D = [d_{ij}]_{n \times n}\) represent the data units of transmission requirements for a given network. The entry \(d_{ij}\) records the data units of transmission demand associated with \(c_{ij}\).

Definition (Scheduling Matrix \((S)\)). A Scheduling Matrix \(S = [s_{ij,t}]_{n \times n \times T}\) defines a transmission schedule, where

\[
s_{ij,t} = \begin{cases}
1, & \text{reserved for host } h_i \text{ sends data to } h_j \text{ during slot } t, \\
0, & \text{otherwise.}
\end{cases}
\]

Fig. 3 shows an example of the scheduling matrix where time slot \(t_2\) is allocated to \(c_{5,1}, c_{5,2}, \text{ and } c_{4,3}\). Let \(r\) and \([t_1, t_2]_{ij}\) denote the transmission rate and the transmission interval from \(t_1\) to \(t_2\), allocated to \(c_{ij}\), respectively. We have

\[
|\{t | t \leq t_2\}_{ij}| = \frac{|d_{ij}|}{r} = |\{t | t \in [t_1, t_2]_{ij} \text{ and } s_{ij,t} = 1\}|.
\]

Let \(\delta_{ij}\) represent the set of transmission slots from 0 to \(T\) allocated to \(c_{ij}\), where

\[
\delta_{ij} = \{t \in [0, T] | s_{ij,t} = 1\}.
\]

Let \(delay(i, j)\) denote the waiting time of \(c_{ij}\). If the transmission interval \([t_1, t_2]_{ij}\) is allocated for \(c_{ij}\), then the following equation holds.

\[
|\delta_{ij}| = |t_2 - t_1 + 1| \text{ and } delay(i, j) = t_1.
\]

3.2. Problem formulation

Given a network \(G = (V,E)\), assume that the transmission requirement for each host is stored in matrix \(D = [d_{ij}]_{n \times n}\). Two operators are defined before introducing scheduling.
Definition (Positive AND operator (\odot)). Given two positive integers x and y, the operator \odot defines the Positive AND operation as follows:

$$x \odot y = \begin{cases} 1, & \text{if } (x > 0) \text{ and } (y > 0), \\ 0, & \text{otherwise}. \end{cases}$$

Definition (Positive XOR operator (\oplus)). Given two positive integers x and y, the operator \oplus defines the Positive XOR operation as follows:

$$x \oplus y = \begin{cases} 1, & \text{if } (x \neq y), \\ 0, & \text{otherwise}. \end{cases}$$

Although the k-beam smart antennas system permits a host to communicate with k different hosts at any given time, the exploitation of parallel transmissions should satisfy several constraints, thus avoiding the interference and deafness problems. These constraints are introduced in the following subsections.

3.2.1. Beam mode constraint

All beams of an antenna system should be set to the same mode (either sending or receiving mode) at any given time. This hardware constraint is referred to as the beam mode constraint. The scheduling schemes cannot assign a host to send a message using one beam and receive a message using another beam at any given slot t. Therefore, any host h_i cannot be allowed to have both values of $s_{x,t}$ and $s_{y,t}$ to be 1s at slot t, given that h_x and h_y are neighbors of h_i. Expression (1) shows the beam mode constraint.

$$s_{x,t} \odot s_{y,t} = 0, \quad \forall h_x, h_y \in N_i, \quad \forall t \in T, \quad \forall h_i \in V. \quad (1)$$

3.2.2. Data diversity constraint

Each beam of the smart antenna system can send messages to a maximum of one neighboring host at any given time slot. This hardware constraint is referred to as the data diversity constraint. Let neighboring hosts h_x and h_y be located in beam$_q$ of host h_i. Expressions (2) and (3) can be applied to ascertain whether host h_i is arranged to send/receive messages to/from its neighboring hosts h_x and h_y in beam$_q$ at any given slot t. The following constraint should be satisfied.

$$(s_{x,t} \odot l_{i,x,q}) \odot (s_{y,t} \odot l_{i,y,q}) = 0, \quad \forall h_x, h_y \in N_i, \quad \forall t \in T, \quad 1 \leq q \leq k. \quad (2)$$

$$(s_{x,t} \odot l_{i,x,q}) \odot (s_{y,t} \odot l_{i,y,q}) = 0, \quad \forall h_x, h_y \in N_i, \quad \forall t \in T, \quad 1 \leq q \leq k. \quad (3)$$

3.2.3. Interference constraint

Each beam of the smart antenna system can receive messages from at most one neighboring host at any given slot. This hardware constraint is referred to as the interference constraint. Let neighboring hosts h_i and h_k be located in beam$_q$ of host h_j. Expression (4) verifies whether $c_{x,y}$ interferes with host h_i at any given slot t when it is arranged to receive messages from host h_k.

$$(s_{i,j} \odot l_{i,j,q}) \odot (s_{x,y} \odot l_{j,x,q}) = 0, \quad \forall h_i, h_x, h_y \in N_j, \quad \forall t \in T, \quad 1 \leq q \leq k. \quad (4)$$

Fig. 4 shows an example of the interference constraint when $c_{i,j}$ and $c_{x,y}$ are scheduled at any given slot t.

The challenge addressed herein entails developing efficient transmission scheduling schemes for exploiting the opportunities for parallel transmissions and minimizing total latency. The exploitation of parallel transmissions should satisfy several constraints, including the beam mode, data diversity, and interference constraints. The proposed scheduling mechanisms are operated on the cluster-based [13] network topology where a cluster consists of a head, members and gateways. Let m denote the number of constructed hosts in the cluster. Let $\delta_{i,j}$ and $\text{delay}(i,j)$ denote the set of scheduled transmission intervals allocated for a communication pair $c_{i,j}$ and the latency of $c_{i,j}$, respectively. The proposed scheduling mechanism attempts to allocate the transmission interval $\delta_{i,j}$ to achieve the following goals.

$$\min \cdot \frac{1}{m} \sum_{i=1}^{m} \sum_{j=1}^{m} |\delta_{i,j}| \quad \text{and} \quad \min \sum_{i=1}^{m} \sum_{j=1}^{m} \text{delay}(i,j)$$

The first goal is to minimize the average transmission intervals, which can be achieved by exploiting the opportunities for parallel transmissions. The second goal is to minimize the total latency (i.e., the sum of transmission latency for each communication), which can be achieved by minimizing the interference among the transmissions.

Fig. 5. The duration of each frame in the proposed schematic is comprised of three phases: request collection, scheduling, and data transmission.
4. Scheduling mechanisms for a smart antenna system

Two scheduling mechanisms, referred to as the Intra-S³ and S³ schemes, are proposed for the smart antenna system. The Intra-S³ scheme is proposed to schedule the communication pairs for each cluster, and the S³ scheme extends the Intra-S³ mechanism to the inter-cluster environment. In a cluster, the head is responsible for collecting the transmission requirements of the members and for arranging the transmission slots for the requirements. The proposed Intra-S³ scheme partitions the duration of each frame into three sub-frames, which are used for performing operations such as requesting collection, scheduling, and data transmission as shown in Fig. 5. The Intra-S³ scheduling algorithm is mainly comprised of these three major tasks and is executed in every frame. The following section details the Intra-S³ scheduling scheme and illustrates its concepts with examples.

4.1. Request collection phase of Intra-S³

In this phase, the head collects the neighboring relationships, i.e., the existing links for the hosts in its cluster and constructs the neighbor matrix \(L \). First, the head polls each neighbor to collect neighbor requests. A polling operation is comprised of at most \(k \) messages simultaneously sent from \(k \) different beams and prompts hosts located in different beam sectors of the head to transmit their transmission requests at the next time slot. After receiving the polling message, all polled members can simultaneously send their transmission requirements to the head in the next slot. A common transmission rate is used in this phase. The transmission requirement specifies the volume of transmission data and the transmission rate. Upon receiving transmission requests, the head establishes the transmission matrix \(D \), transmission rate matrix \(R \), and null scheduling matrix \(S \); the scheduling phase can then be initiated.

Figs. 6 and 7 provide examples of the entire scheduling algorithm. In Fig. 6a, host \(h_1 \) serves as the head of the cluster. Each host is assumed to be equipped with a four-beam smart antenna system. In this phase, host \(h_1 \) polls each neighbor to collect neighbor requests and creates the neighbor matrix \(L \) of the neighboring hosts, as shown in Fig. 6b. The head \(h_1 \) arranges the available slots for each member according to the neighbor matrix \(L \), thus allowing them to send transmission requirements to the head without collision. Fig. 7a shows the potential communication pairs, and Fig. 7b provides the data volume for each transmission requirement for the network, as shown in Fig. 6a.

4.2. Parallel transmission construction for scheduling

Parallel transmission construction is designed to exploit the opportunities for parallel transmissions. This phase mainly consists of two tasks: Host Parallel set Construction (HPC) and Cluster Parallel sets Construction (CPC). In the HPC, the cluster head considers one member host \(h_i \) at a time and constructs several Host-centric Parallel Sets (HPS) for \(h_i \); thus, all parallel communications in the various beams of host \(h_i \) can be arranged. The cluster head then applies the CPC to construct the Cluster-centric Parallel Sets (CPS). Each CPS can be regarded as a maximal merge set of HPSs from different hosts and allows several hosts to execute their communications simultaneously through their multi-beam smart antenna systems.

The HPC executed by the cluster head attempts to exploit the opportunities for parallel transmissions from multiple beams under the beam mode constraint and data diversity constraint. Let \(b_{1:k} \) be the transmission requirement set of host \(h_i \) in beam \(k \):

\[
b_{1:k} = \{ c_{ij} | d_{ij} > 0 \text{ and } l_{ij,k} = 1 \}.
\]

In the HPC, the head \(h_{\text{head}} \) selects a communication pair from each \(b_{1:k} \) for host \(h_i \) to construct an HPS if \(b_{1:k} \) is non-empty; thus, the HPC may produce several non-empty HPSs for each host \(h_i \), which are referred to as \(g_{1,1}, g_{1,2}, \ldots \), and \(g_{\text{size}} \). Fig. 8 presents the process of HPC for the example provided in Fig. 7a. All transmissions associated with the

![Fig. 6. Example of network topology and neighbor matrix of the network.](image-url)
pairs collected in an HPS can be simultaneously transmitted through different beams of \(h_i \); \(h_{\text{head}} \) then ranks the HPSs of all hosts in ascending order regarding the element number of each HPS and renames each HPS by parallel group \(g'_i \), where \(1 \leq i \leq m \) and \(|g'_1| \geq |g'_2| \geq \cdots \geq |g'_m| \). Therefore, all parallel groups are denoted by \(P_i(h_{\text{head}}) \) and can be obtained through the union of parallel sets of different hosts:

\[
PT(h_{\text{head}}) = \bigcup_{i=1}^{m} g'_i,
\]

The CPC merges the parallel groups of \(P_i(h_{\text{head}}) \) to generate CPSs, which exploit more opportunities for simultaneous transmissions in the multiple beams of multiple hosts. The CPC should consider the communication constraints when constructing the CPSs according to the neighbor matrix \(L \) and transmission demand matrix \(D \). The constraint checking function \(f_{PT}(c_{ij}, c_{xy}) \) is defined as follows:

\[
f_{PT}(c_{ij}, c_{xy}) = \begin{cases}
\text{true, if (1) and (2) hold,} \\
\text{false, otherwise.}
\end{cases}
\]

If function \(f_{PT}(c_{ij}, c_{xy}) \) returns false, the communication pairs \(c_{ij} \) and \(c_{xy} \) cannot be scheduled in the same time slot, which avoids the violations of communication constraints. The communication pair \(c_{ij} \) can be collected into an existing CPS if \(f_{PT}(c_{ij}, c_{xy}) \) is true for each communication pair \(c_{xy} \) in the CPS. When the pair \(c_{ij} \) is collected into the CPS, it should be deleted from the original HPS. Let \(\zeta \) be the new set of \(P_i(h_{\text{head}}) \) obtained by applying HPC; \(h_{\text{head}} \) then ranks the parallel groups in ascending order according to the element number of each group and renames each group \(c_{xy} \) of \(P_i(h_{\text{head}}) \) in ascending order regarding the element number of all hosts in ascending order:

\[
\text{sorting number of each group and renames each group.}
\]

4.3. Scheduling phase of Intra-S3

This phase treats the CPSs which are produced in the PTC sub-phase as its inputs. Two scheduling schemes, Max Parallel Transmission (MaxPTTrans) and Delay Aware Scheduling (DAS) are proposed to maximize the number of parallel transmissions and minimize the average latency, respectively.
4.3.1. Max parallel transmission scheduling (MaxPTran)

The MaxPTran algorithm schedules the transmission pairs of the $P(T(h_{head}))$ set in a slot-based manner. The cluster head initially resets the initiation time (i.e., t_s). Let r and $d_{max}(i)$ be the transmission rate and maximal volume of transmission data for the communication pairs in parallel group g_0^i, respectively. The number of time slots, referred to as $Slots(i)$, is assigned for each parallel group g_0^i, where

$$Slots(i) = \frac{d_{max}(i)}{r}.$$

Therefore, the transmission interval $[t_s, t_e]$ is reserved for the parallel group g_0^i, where t_e is equal to $t_s + Slots(i)$, and the interval

$$\delta_{a,b} = [ts, ts + \frac{da,b}{r}]_{a,b}$$

is set for each communication pair $c_{ab} \in g_0^i$, where entry $d_{a,b}$ denotes the data units of transmission demand associated with c_{ab}. The scheduling matrix S can be filled according to the slots assigned for each communication pair of group g_0^i. The start time t_s is then set at $t_s + Slots(i)$, and the interval $\delta_{a,b} = [ts, ts + \frac{da,b}{r}]_{a,b}$ is set for each communication pair $c_{ab} \in g_0^i$, respectively. The entries $\delta_{1,4} = [0, 5]$ and $\delta_{1,2} = [5, 10]$ of the scheduling matrix S are filled according to the assigned time slots of communication pair $c_{1,4}$ and $c_{1,2}$, respectively. Finally, the entry $\delta_{2,3} = [11, 14]$ of the scheduling matrix S is filled according to the assigned time slots of communication pair $c_{2,3}$ belonging to group g_0^3. Fig. 9 shows the scheduling results of applying the MaxPTran algorithm onto the example shown in Fig. 7a. The total transmission slots and latency are 15 and 21, respectively.

Algorithm. MAXimal Parallel TRANsmissions

Algorithm: MAXimal Parallel TRANsmissions

Input: $P(T(h_{head}))$

Output: Transmission Schedule Matrix S

Step 1.

$t_s = 0$; $t_e = 0$;

Step 2.

For $i = 1$ to $|PT(h_{head})|$

Compute $Slots(i)$ for the group $g_1^i \in PT(h_{head})$;

$t_e = t_s + Slots(i)$;

For each $c_{ab} \in g_1^i$

$$\delta_{a,b} = [ts, ts + \frac{da,b}{r}]_{a,b}$$

$t_e = t_e$;

Step 3.

Broadcast the scheduling Matrix S.

4.3.2. Delay aware scheduling (DAS)

DAS is a delay-sensitive scheduling algorithm that assigns a higher transmission priority to the parallel group with lower numbers of time slots. DAS attempts to reduce
the total transmission time and average latency. The basic concept of DAS is to adjust the communication pairs among the parallel groups obtained from MaxPTran to reduce the waiting time of each group. The variance function $u_{g,0} \cdot \frac{C_0}{C_1}$ is used to evaluate the variance transmission duration of the communication pairs in each parallel group g, where

$$u_{g,0} \cdot \frac{C_0}{C_1} = \sum_{c_{ab} \in g'} \left(\frac{1}{|g'|} \sum \left[\frac{d_{ab}}{r} - \frac{d_{ab}}{r} \right] \right)^2.$$

Let g'^+_{ℓ} be the changed g'_{ℓ} after executing the DAS algorithm. The DAS algorithm intends to adjust the orders of the communication pairs among the parallel groups to further minimize the value of $\Sigma \varphi(g') - \Sigma \varphi(g'^+_{\ell})$. Let q be the number of transmissions required in the cluster. The computational complexity of the DAS algorithm is $O(q^2)$.

Recall that c_{ij} and c_{xy} can be scheduled in the same time slot if function $f_{PT}(c_{ij}, c_{xy})$ returns true. Step 1 in the DAS algorithm aims to exchange the communication pairs c_{ab} and c_{xy} if the following two conditions are satisfied: 1) the value of function $f_{PT}(c_{ab}, c_{xy})$ returns true for each $c_{ab} \in g'_{\ell} - \{c_{2,3}\}$, and the value of function $f_{PT}(c_{xy}, c_{ab})$ returns true for each $c_{xy} \in g'_{\ell} - \{c_{2,3}\}$, and 2) the value of $\Sigma \varphi(g'_{\ell} - \{c_{ab}\} + \{c_{xy}\}) + \Sigma \varphi(g'_{\ell} - \{c_{xy}\} + \{c_{ab}\})$ should be lower than $\Sigma \varphi(g'_{\ell})$. Step 2 in the DAS algorithm aims to change the communication pair c_{xy} into the group g'_{ℓ} if c_{xy} satisfies the condition that the value of

Fig. 10. Steps of DAS for illustrating the changes of parallel groups in Fig. 6a.

Fig. 11. Scheduling results of the example shown in Fig. 6a through the application of the DAS algorithm.

Fig. 12. Example illustrating the basic concepts of the extended ESIF MAC in the proposed Intra-S3 scheme.
function $f_{\text{PT}}(c_{ab}, c_{xy})$ is true for each $c_{ab} \in g_i$. The waiting cost function $W(g_i')$ is defined as $W(g_i') = \text{Slots}(i)$.

Algorithm. Delay Aware Scheduling (DAS)

Algorithm: Delay Aware Scheduling (DAS)
Input: $P_T(h_{\text{head}})$
Output: Transmission Schedule Matrix S

Step 1.
For any two g_i' and $g_j' \{ $c_{ab} \in g_i' \}$, $c_{ab} \in g_j'$.
- If $f_{\text{PT}}(c_{xy}, c_{ab})$, where $c_{xy} \in g_i' \} - \{ c_{ab}$
 - If $f_{\text{PT}}(c_{ab}, c_{xy})$, where $c_{ab} \in g_j' \} - \{ c_{ab}$
 - $U = g_i' \setminus \{ c_{ab} \} + \{ c_{xy} \}$
 - $V = g_j' \setminus \{ c_{ab} \} + \{ c_{xy} \}$
 - $\phi(U) + \phi(V) < \phi(g_i') + \phi(g_j')$
 - $g_i' = U$; $g_j' = V$.

Step 2.
For any two g_i' and g_j', where $c_{ab} \in g_j'$, for all $c_{xy} \in g_i'$;
- $g_i' = g_i' \setminus \{ c_{ab} \}$
- $g_j' = g_j' \setminus \{ c_{ab} \}$.

Step 3.
$t_i = 0, t_j = 0$.
- For each g_j', following the value of $W(g_j')$ increasing order
 - Compute $\text{Slots}(i)$ for the group g_j'
 - $t_i = t_i + \text{Slots}(i)$
 - For each $c_{ab} \in g_i' \} $,
 - $\delta_{ab} = \lfloor \frac{t_i + \text{d}_{ab}}{r} \rfloor - t_i$.

Step 4.
For each g_j', following the value of $W(g_j')$ increasing order
- For each $c_{ab} \in g_j'$ \{ $\delta_{ab} = \lfloor \frac{t_j + \text{d}_{ab}}{r} \rfloor - t_j$
 - while $(t_i, t_j)_{ab}$ can not interfere with $c \in \cup g_j'$
 - $\delta_{ab} = \lfloor t_i - t_j \rfloor - \delta_{ab}$.

Step 5.
Broadcast the scheduling Matrix S

Consider Fig. 7a for example. The set $P_T(h_{\text{head}})$ returned from the PTC procedure contains $g_i' = \{ c_{2,3} , c_{3,1} , c_{4,3} \}$, $g_j' = \{ c_{1,2} , c_{1,4} \}$, and $g_3 = \{ c_{2,3} \}$. Assume that the transmission rate is 1 data unit/slot. First, the value of $\Sigma \phi(g_i')$ is determined by using

$$
\Sigma \phi(g_i') = (1.67^2 + 1.33^2 + 0.33^2) + 2 \times (2.5^2) + 0 = 17.17.
$$

The communication pair $c_{5,2}$ belonging to g_i' can be exchanged with $c_{2,3}$, which belongs to g_j' because $\Sigma \phi(g_j') < \Sigma \phi(g_i')$, where

$$
\Sigma \phi(g_j') = (1^2 + 0^2 + 1^2) + 2 \times (2.5^2) + 0 = 14.5.
$$

Thereafter, $c_{5,2}$ can be changed from g_i' to g_j'. The changed set $P_T(h_{\text{head}})$ contains $g_i' = \{ c_{2,3} , c_{3,1} , c_{4,3} \}$ and $g_j' = \{ c_{1,2} , c_{1,4} , c_{5,2} \}$, and the group g_3 is discarded because it is empty. The parallel groups of the DAS are determined by modifying the results obtained through the application of MaxPT-Trans, as shown in Fig. 10. In Fig. 10, the parallel groups obtained in MaxTrans are improved by exchanging $c_{5,2} \in g_i'$ and $c_{1,4} \in g_j'$ for minimizing the value of $\Sigma \phi(g_i') - \Sigma \phi(g_j')$ in Step 1 of DAS. Thereafter, the results can be improved further by merging $c_{5,2} \in g_i'$ into g_j' to increase the size of the parallel pairs of g_j'.

The values of $\text{Slots}(1)$ and $\text{Slots}(2)$ are 6 and 5, respectively. Because the parallel group with a lower number of slots is scheduled with a higher transmission priority, the time slot assignment is applied to the parallel groups in the following sequence: $g_i' > g_j'$, where $W(g_i')$ and $W(g_j')$ are 5 and 6, respectively. Therefore, the entries $\delta_{1,1} = [0,4]_{5,1}$, $\delta_{2,3} = [0,3]_{5,2}$, and $\delta_{3,2} = [0,2]_{5,3}$ of scheduling matrix S are filled by the head according to the slot assignments of $c_{5,1}, c_{2,3}$ and $c_{4,3}$, respectively. Thereafter, the entries $\delta_{1,2} = [5,10]_{5,2}$, $\delta_{1,4} = [5,5]_{5,4}$, and $\delta_{5,2} = [5,6]_{5,2}$ of scheduling matrix S are filled for pairs $c_{1,2}, c_{1,4}$, and $c_{5,2}$, respectively. In particular, pairs $c_{5,1}$ and $c_{4,3}$ belong to group g_i' and interfere with $c_{2,3}$. However, they can work in parallel with $c_{5,2}$; thus, the entries $\delta_{2,3}$ can be changed to $\delta_{5,2} = [4,5]_{5,2}$ for reducing the waiting duration. The scheduling results of the DAS algorithm are shown in Fig. 11. The total transmission slots and latency are 11 and 14, respectively.

4.4. Synchronization of Intra-53

ESIF MAC [7] handles synchronization by modifying the IEEE 802.11 RTS/CTS messages to RIF/CIF messages with intelligent feedback. Based on the synchronization approach proposed in [7], this study further defines several control packets such as the Collecting Information Request
(CIR) and Scheduling Information Announce (SIA) to satisfy the synchronization requirements of the Intra-S3. The CIR and SIA packets further assist the cluster header to gather scheduling information from its neighbors and announce the scheduling results to them, respectively. Each node is aware of the number of the neighboring nodes by receiving RIF and CIF messages, and listening to the SCH messages from the neighbors. An introduction of the synchronization of Intra-S3 is shown in Fig. 12.

During the request collection phase, the cluster header broadcasts the CIR messages in all beams to initiate and synchronize the operations in the phase. The appropriate duration included in the CIR messages is used to terminate the phase. On receiving the CIR message, each neighboring node sends the information including the neighboring relationships in the beams and transmission requests to the cluster header using the RIF/CIF/SCH messages before the duration ends. The cluster header can determine the neighbor matrix and transmission demand matrix for the next phase according to the information received from neighboring nodes. The Scheduling Phase initiates after the Request Collection phase is complete. The cluster header executes the Intra-S3 algorithm to schedule the transmission interval allocated for the communication pairs, minimizing the average latency and maximizing the network throughput. Thereafter, the neighboring nodes wait for the scheduling results announced by the cluster head.

The cluster header announces the scheduling results by broadcasting SIA messages in all beams. On receiving the scheduling results, the neighboring nodes follow the scheduled timing to initiate the transmissions. The N field of the SIA messages shows the repeat times to apply the scheduling, meaning that each scheduling result of the Intra-S3 can be applied for a synchronizing transmission period; thus, the control overhead of Intra-S3 is cost efficient.

Fig. 12 shows an example of the basic concepts of the extended ESIF MAC for the proposed Intra-S3 scheme. In Fig. 12, the cluster header a broadcasts CIR messages to collect the transmission requests of its member nodes b and c, and SIA messages to announce the scheduling results.

5. The S3 scheme

The proposed S3 scheme extends Intra-S3 to permit the consideration of inter-cluster scheduling. The applied inter-cluster scheduling operates on a cluster-based network topology where several stations referred to as gateways participate in more than one cluster.

There are two challenges when extending the Intra-S3 algorithm from an intra-cluster to inter-cluster scenario. First, according to the beam mode constraint, a gateway cannot be scheduled to send a message from one cluster and receive a message from another cluster at any given slot t. Second, determining how to minimize the average latency is critical, especially for cross-cluster routing.

The proposed inter-cluster scheduling applies an adaptive round-robin method to satisfy the beam mode constraint and minimize latency. In the proposed scheduling process, each gateway maintains a cluster indicator and duty indicator to perform decisions regarding which cluster it will participate in and what its participation
duration is. The gateway participates in exactly one cluster at a time. Fig. 13 gives an example to illustrate the inter-cluster scheduling algorithm. In Fig. 13, two clusters share the common gateway h_2. Let cluster_ind and duty_ind be the cluster indicator and duty indicator maintained by station h_2, respectively. Assume that gateway h_2 currently participates in cluster h_1 and that cluster_ind is set at h_6. At T_0, the cluster head h_1 announces the time slot arrange-
ment to its members; thus, gateway h_1 knows that the end of the participation time of this cluster is $T_{s,1}$. Furthermore, the gateway h_2 sets the duty_ind to $T_{s,1}$. If the cluster head h_6 initiates its intra-clustering between T_i and $T_{s,1}$, then its scheduling does not consider h_2 because h_2 does not participate in the cluster. At $T_{s,1}$, the gateway h_2 switches from cluster h_1 to cluster h_6 and waits for the next scheduling cycle of cluster h_6. Fig. 14 shows the resultant scheduling for the two clusters.

6. Simulation study

This section examines the performance improvement of the proposed Intra-S^3 and S^3 schemes against the ROMA [6] and ESIF [7] approaches in terms of aggregated throughput and average packet delay. Each node is equipped with an SB-MBA [13], and the transmitting range of the beam is set at 100 units at a data rate of 11 Mbps. The MAC protocol depicted in Subsection 4.4 is applied to the proposed schemes. Each node generates packets with sizes randomly chosen from 500, 1000, 1500, and 2000 bytes. Similar to IEEE 802.11, the SIFS, AIFS, and DIFS durations are set at 10, 20, and 50 μs, respectively. Similarly, the packet sizes for the RTS, CTS, and ACK are 44, 38, and 38 bytes, respectively. The packet sizes of the RIF/CIF/SCH/CIR/SIA are set at 21 bytes [7]. The generation of packets at the source node is modeled as a Poisson process with Rayleigh fading channels. Furthermore, each node has a buffer that can hold a maximum of 30 packets. Each performance metric is obtained by averaging the respective metrics of a 1000 experiments. The 95% confidence interval is always less than 5% of the reported values. Table 2 shows the abbreviations of each compared mechanism. The network simulator ns-2 is used to perform all simulations.

6.1. Simple topology

To facilitate the understanding of the benefits in the proposed schemes compared to those of related studies, the simple network topology shown in Fig. 13a and b is first considered. Each node is equipped with the four-beam smart antennas. Figs. 15 and 16 examine the performance of each scheme in terms of network throughput and end-to-end delay when the packet arrival rate ranges from 2 to 20 packets/s.

Intra-S^3 and ESIF generally outperform ROMA in terms of network throughput and delay. Although ROMA improves the scheduling efficiency by considering the two-hop neighboring hosts, the overhead for collecting the communication requests leads to lower throughput compared to the other two mechanisms. Moreover, the hash-based policy for deciding the link priority can be further improved by applying a more efficient policy. In ESIF, each node determines its own transmission schedule based on the transmission demands of neighboring nodes. However, the performance of parallelism highly depends on the grouping scheme which aims to construct a set of parallel transmissions into a group. By comparison, the proposed Intra-S^3 determines the schedule by considering all requested data transmissions in a cluster. Therefore, Intra-S^3 exploits more opportunities for parallel transmissions than ESIF does, thus resulting in a higher network throughput, as shown in Fig. 15. Regarding Fig. 15, Intra-S^3 with DAS has a higher throughput than Intra-S^3 with MaxPTran because it adjusts the transmission schedule among the parallel groups to further reduce the total number of time slots required for all transmissions. As shown in Fig. 16, Intra-S^3 with DAS achieves a shorter delay than the Intra-S^3 with MaxPTran because it further adjusts the transmission schedule among the parallel groups. When the packet arrival rate is larger than six packets/sec, the probability of packet drop is increased with the degree of data congestion. As shown in Fig. 17, the proposed Intra-S^3 demonstrates higher performance than the other two mechanisms do in terms of the drop probability, because the Intra-S^3 achieves superior parallelism, thereby reducing the phenomenon of data congestion.

6.2. Ad hoc topologies

The following simulation environment considers a network containing 200 nodes that is distributed in an area of 500 x 500 square units. The number of beams equipped in each node ranges from 1 to 8.

6.2.1. Performance study of the Intra-S^3 scheme

The performance of an eight-beam smart antenna system is shown in Figs. 18, 19, 20, 21, 23 and 24. Fig. 18 shows a comparison of the aggregated network throughputs of the compared approaches that was executed by varying the number of neighboring hosts ranging from 1 to 16. In general, the network throughputs of the compared approaches increase with the number of neighboring hosts. However, the network throughput remains the same when the number of neighboring hosts is higher than 10. This is because the number of parallel transmissions is bound by the number of beams. By comparison, the proposed Intra-S^3 with DAS and MaxPTran, outperforms ROMA and ESIF, because it exploits more spatial reuse opportunities by arranging more simultaneous transmissions (or receptions) of multiple packets in different beams. In particular, Intra-S^3 with DAS has a more favorable throughput compared to that of MaxPTran, because it further adjusts the transmission pairs among parallel groups to reduce the total number of required time slots for all transmissions. ROMA has a poor network throughput compared to other schemes because its control overhead increases with the number of neighboring nodes.

Fig. 19 shows the impact of network density on transmission delay. In general, both the neighboring interference and control overhead increase with the number of neighboring hosts. ROMA attempts to collect communication requests from two-hop neighbors; thus, ROMA has a larger delay compared to other schemes. Because Intra-S^3 with either DAS or MaxPTran approaches attempt to arrange a maximal number of parallel transmissions in different beams, the waiting time of most transmissions is significantly reduced; thus, the two proposed approaches outperform the existing ROMA and ESIF approaches in transmission delay. Intra-S^3 with DAS further adjusts several transmissions by applying the MaxPTran schedule to
complete all transmissions of each parallel group earlier. Therefore, \textit{Intra-S} with DAS reduces the delay considerably compared to \textit{Intra-S} with MaxPTran.

Fig. 20 shows the aggregated data transmissions of the proposed schemes as compared with ROMA and ESIF. A node applying the ESIF MAC can arrange its parallel transmissions in beams and avoid the deafness and hidden terminal problems. Therefore, ESIF has lower control...
overhead and shorter transmission delay than ROMA. Intra-S\(^3\) determines the schedule by considering all requested data transmissions in a cluster. Therefore, Intra-S\(^3\) exploits more opportunities for parallel transmissions than ROMA and ESIF do, and as a result. The proposed Intra-S\(^3\) has shorter delay and more aggregated data transmissions, as shown in Fig. 20.

Fig. 21 shows the impact of the number of beams on the network throughput. The four compared approaches have superior network throughput when the number of beams is increased, because the number of opportunities for spatial reuse increases with the number of beams. Intra-S\(^3\) with MaxPTran and DAS outperforms ROMA and ESIF because it uses the multiple beams more efficiently. However, Intra-S\(^3\) with DAS outperforms Intra-S\(^3\) with MaxPTran because it reduces the number of required time slots to complete all transmissions.

Fig. 22 shows the results of an additional examination of the impact of the beam number on transmission delay. Intra-S\(^3\) with DAS has the shortest delays compared to other approaches because it reduces the number of required time slots to complete all transmissions. Intra-S\(^3\) with DAS has the smallest delay compared to other approaches because it attempts to reduce the transmission delay of each parallel group. Intra-S\(^3\) with MaxPTran significantly arranges a maximal number of simultaneous transmissions in different beams, resulting in higher transmission delay performance compared to ROMA and ESIF.

6.2.2. Performance Study of the S\(^3\) Scheme

The S\(^3\) scheme is designed to extend Intra-S\(^3\) to consider inter-cluster scheduling for avoiding a scheduling collision between clusters. The performances of Intra-S\(^3\) and S\(^3\) with the DAS are compared with those of ROMA and ESIF. An eight-beam smart antenna system was used in the experiments. Figs. 23–26 show the simulation results, where S\(^3\) (DAS) denotes Intra-S\(^3\) with DAS.

Fig. 23 shows a comparison of the aggregated network throughputs of the compared schemes that was conducted by varying the number of neighboring hosts ranging from 1 to 16. The S\(^3\) scheme outperforms Intra-S\(^3\) because it avoids the violation of the beam mode constraint of gateways. However, the Intra-S\(^3\) approach still reduces the transmission delay considerably, as compared to the ROMA and ESIF approaches, as shown in Fig. 24.

Fig. 25 shows the impact of the number of beams on the network throughput for the proposed Intra-S\(^3\) and S\(^3\) schemes compared to ROMA and ESIF approaches. The proposed Intra-S\(^3\) and S\(^3\) schemes have superior network throughputs when the number of beams is increased because the opportunities for spatial reuse increase with the number of beams. The proposed S\(^3\) approach effectively avoids the violation of the beam mode constraint for gateways; thus, it outperforms Intra-S\(^3\) in terms of network throughput. Furthermore, S\(^3\) attempts to arrange the maximal number of parallel transmissions in different beams without collisions in the schedule; thus, the delay time of most transmissions can be significantly reduced. Therefore, S\(^3\) has a shorter transmission delay than the other three approaches, as shown in Fig. 26.

Fig. 27 shows the effect of packet size diversity on performance. In this study, the diversity of packet size is defined as the probability that the size of new generated packet is different to the size of a previously generated packet. The size of a newly generated packet is always different to the size of a previously generated packet in case the diversity of the packet size is set at one. The evaluation results of ESIF and ROMA drop substantially when the diversity approaches one, as shown in Fig. 27. This is because both ESIF and ROMA do not schedule packet transmissions according to packet sizes and available time in each channel, thus leading to significant bandwidth holes. The proposed S\(^3\) and Intra-S\(^3\) apply the proposed scheduling mechanisms and arrange the orders of packet transmissions to reduce the number of bandwidth holes. Therefore, the results of S\(^3\) and Intra-S\(^3\) drop only slightly when the diversity approaches one.

The proposed S\(^3\) and Intra-S\(^3\) apply the neighboring graph to represent the interference relationship for exploiting the opportunities for parallel transmissions. Fig. 28 shows the interference impact of multi-hop neighbors on the network throughput, which is caused by varying the number of beams. The percentages of interference are measured according to the ratio of interference created by multi-hop neighbors to the total interference on the receiver side. In Fig. 28, the multi-hop interference decreases with the number of beams because it can be effectively reduced when increasing spatial reuse opportunities. Conversely, S\(^3\) has less multi-hop interference than Intra-S\(^3\) because it further applies the inter-cluster scheduling mechanism. The difference between the multi-hop interference of S\(^3\) and Intra-S\(^3\) is reduced with the number of beams, as shown in Fig. 28. Thus, the proposed schemes have superior network throughputs and delays, even if they apply the neighboring graph to represent the interference relationship for exploiting the opportunities for parallel transmissions.

7. Conclusion

This paper proposes Intra-S\(^3\) and S\(^3\) approaches for scheduling transmissions using smart antenna systems. The Intra-S\(^3\) scheme with the MaxPTran scheduling approach considers the beam mode, data diversity, and interference constraints, and is designed to arrange a maximal number of simultaneous transmissions in different beams for exploiting spatial reuse opportunities. Furthermore, Intra-S\(^3\) with DAS further adjusts the transmissions among parallel groups to initiate each parallel group earlier, thereby reducing the number of required time slots for completing all transmissions. The S\(^3\) approach is proposed for use in the inter-cluster environment. The S\(^3\) approach successfully reduces the latency of inter-cluster scheduling. The performance results reveal that the proposed S\(^3\) and Intra-S\(^3\) with MaxPTran and DAS policies outperform ESIF and ROMA in network throughput and latency.

References

Chao-Tsun Chang received the Ph.D. degree in Computer Science and Information Engineering from National Central University, Taiwan, in 2006. He is with the Department of Department of Information Management, Hsiuping University of Science & Technology, Taiwan, as an Associate Professor in 2012. In the recent ten years, he has directed eleven research projects including seven national NSC projects and seven information system developments. He published thirteen SCI indexed journal papers, including IEEE TVT, IEEE Sensors, Computer Networks, ACM/Baltzer Journal of Wireless Networks, and Journal of Parallel and Distributed Computing. He is a member of the IEEE Computer Society and Communication Society. His current research interests include Ad Hoc wireless networks, wireless sensor networks, cooperative radio networks, and mobile computing.

Tzu-Lin Wang received the B.S. and M.S. degrees in computer science and information engineering in 2007 and 2009, respectively, from Aletheia University, Taiwan. She is currently working toward the Ph.D. degree in the Department of Computer Science and Information Engineering at Tamkang University, Taiwan. She won numerous scholarships in Taiwan and has participated in many wireless sensor networking projects. Her current research interests include wireless sensor networks, Ad Hoc wireless networks, mobile/wireless computing, and WiMAX.

Yun-Jung Lu received the Ph.D. degree from Computer Science and Information Engineering of Tamkang University, Taiwan, in 2012. Currently, he is a software engineer in NVIDIA Corporation.